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ABSTRACT

An extensive simulation study of the problem of relatively aligning two sensors that measure
range, bearing, and elevation is described in this report. Simple simulations are used to
demonstrate the effects of alignment errors on multisensor tracking. The theory and algorithms
for relatively aligning the sensors are briefly summarized. In the original derivation, it was
assumed that the data from the two sensors are synchronous. This work presents the extension and
simulation of the algorithms to permit the use of asynchronous data. This is accomplished by
using Kalman-filter-based prediction algorithms to time-align the state estimates from the two
sensors. One-step, fixed-lag smoothing is also employed to improve the accuracy of the state
estimates. The effectiveness of using the Interactive Multiple Model algorithm versus single
model filtering in the tracking filters prior to bias estimation is also studied. Multiple model
versions for prediction and one-step, fixed-lag smoothing of the track estimates are also applied
and compared with their single model counterparts with respect to bias estimation accuracy. The
bias estimation algorithm as described in this report requires time-aligned state estimates from the
tracking filters of each sensor, or measurements from each of the two sensors, and uses Kalman
filtering to estimate the sensor bias parameters, which are assumed to be constants. A simulation
that illustrates the effect of sensor misalignment on the ability to accurately associate and fuse
tracks in a multisensor system is described. The results of that experiment indicated that the
percent of correctly associated tracks was between 90 and 95 percent when the sensors were
properly aligned; and when the sensors were unaligned, the tracks were never associated. Finally,
an example of aligning real data from a three-dimensional radar and a two-dimensional Electronic
Support Measure (ESM) sensor measuring bearing and elevation is described. To accomplish the
alignment, the heuristic of assigning the radar range to the ESM state is successfully used. It is
concluded that the algorithm would prove to be useful for relatively aligning data from diverse
tracking sensors that are stabilized and mounted near to each other, such as those found on a ship.
This would increase the efficiency of a multisensor tracking system, lessen the tracking burden by
providing more accurate data for track association and fusion, and provide a more accurate picture
of the environment.
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1.0 INTRODUCTION

In an integrated multisensor tracking system, individual sensor tracks on mutual targets are
fused into a single system track. This reduces the work load of the system if it is done accurately
and efficiently. One of the most challenging problems encountered when attempting to produce
accurate fused tracks is that of aligning the data from the multiple sensors. Alignment is the
process of expressing the data from the sensors in a common reference frame, where errors in the
transformation process are minimized. Alignment is particularly important in the integration of
stand-alone sensors into multisensor systems to provide performance improvements and enhanced
capabilities for tracking and surveillance. The presence of uncompensated alignment errors will
degrade the overall performance of multisensor systems; for example, they can produce redundant
tracks on the same target and they can lead to composite (or system) tracks that are less accurate
than the local tracks from the individual sensors.

One source of alignment errors is calibration errors (i.e., offsets) in the measurements
provided by the sensors. Although the sensors are usually calibrated in an initial calibration
procedure, the calibration may deteriorate over time. Another source of registration errors is
attitude (or orientation) errors in the reference frames of the sensors. Most sensors incorporate
some technique for compensation of rotational movements in the reference frame of the sensor
(usually a gyroscopic device to determine the attitude of the sensor). Tracking systems can be
grouped into three major classes according to the type of compensation: (1) Unstabilized - the
sensor operates in a totally unstable environment, the data from the sensor contains rotational
components, and gyroscopic compensation is external to the sensor; (2) Partially stabilized - the
sensor is stabilized along one axis, its data contain rotational components in the unstabilized axes,

and the remainder of the compensation is external to the sensor; (3) Fully stabilized - the sensor is

gimbal-mounted and its data contain no rotational components.1 Attitude errors in the reference

frame can be caused by bias errors in the gyros and/or gimbals. Other sources of errors include
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sensor location errors caused by bias errors in the navigation systems associated with the sensors
and timing errors in the clocks of the sensors.

Simulation studies that are described in this report have shown that, if alignment errors are not
corrected and if they are large enough, a fused system track will actually be less accurate than the
unfused tracks from the individual sensors, and they can even lead to an inability to associate the
tracks from the two sensors. Large enough in this context can be, for example, a bias of just
0.6 deg in bearing alone. If such errors occur, the system may not be able to correlate the tracks
from the individual sensors, and must therefore maintain separate tracks on a single target. This
increases the processing burden and provides an inaccurate picture of the environment. On the
other hand, if the biases can be estimated and removed, the fused track will most likely be
superior to the individual tracks, and accurate track association can be maintained, thus reducing
the system load and producing a more accurate picture of the environment. While biases may
often be assumed to be constant over short times, periodic readjustment is usually needed in the
long term. The algorithms discussed in this report enable on-line recursive bias estimation so that
alignment can be adjusted in real-time or near real-time.

This study represents an extension and application of theory derived in references (2) and (3).
The new work involves the comparison of the use of single-model versus multiple-model filtering
algorithms and time-aligning asynchronous data using prediction alone versus prediction and one-
step, fixed-lag smoothing. There are four facets to the work described in this report. First, simple
simulations are used to demonstrate the effects of alignment errors on multisensor tracking.
Secondly, a model is described that simulates an environment in which two, three-dimensional
(3D) sensors track mutual targets in the presence of noise and with sensor biases in range, bearing,
elevation, roll, pitch, and yaw. The bias estimation technique described in reference (2) is used,
making use of one or two targets that are being tracked by both sensors, to recursively estimate the
relative biases between the two sensors. The theory and method of bias estimation described in
reference (2) permits alignment of two sensors relative to each other, rather than absolutely
aligning them with respect to the truth. Relative alignment is sufficient for accurate track
association, and, in fact, absolute alignment is not possible in this context because the truth is not
observable by either sensor. To obtain true information for alignment, a third source of accurate

position information, such as the Global Positioning System, would be required. In such a case,
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the biases for each sensor would be estimated separately, and both tracks would be corrected to
align with the truth. Due to simplifying assumptions that will be made, this theory applies when
the sensor locations are accurately known, the biases are small, and the distance between the

sensors is small enough to employ flat-earth transformations.

The third facet of this work is the comparison of various methods for improving bias
estimation, such as tracking with multiple versus single model filters, and time aligning
measurements by prediction and one-step, fixed-lag smoothing versus prediction alone. The
theory assumes that the data from the sensors are synchronous, though in practice this is seldom
the case. It will be seen that this assumption can be relaxed if accurate time-alignment techniques
are used. The results of simulation studies used to make these comparisons will be presented. The
method and results of associating the aligned and unaligned tracks will also be discussed. Finally,
the theory will be applied to the alignment of real data from a two-dimensional (2D) Electronic
Support Measure (ESM) sensor measuring bearing and elevation and a three-dimensional (3D)
sensor measuring range, bearing, and elevation, by assigning the range from the 3D radar to the
2D ESM sensor. The studies presented in this report indicate that real-time relative sensor
alignment is both feasible and practical for systems meeting the requirements imposed by the
assumptions made in deriving the bias estimation algorithm, and for some systems that do not
strictly meet those requirements.

The remainder of this report is organized as follows. Section 2.0 presents the effects of
alignment errors on multisensor tracking. Section 3.0 presents background information regarding
the theory for the relative alignment of 3D sensors and the model used for simulating the
alignment process. In Section 4.0, the alignment simulation process is described. The process
models tracking, aligning, and associating tracks from two misaligned, asynchronous sensors that
are tracking mutual targets. Section 5.0 presents the results of studies performed using the
alignment model. Section 6.0 gives the results of applying the technique to real data from a 2D
ESM sensor measuring bearing and elevation only, and a 3D radar, using the heuristic technique
of assigning the radar range to the 2D ESM sensor, and assuming no range bias. Finally,

Section 7.0 summarizes the results of this effort.
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2.0 EFFECTS OF ALIGNMENT ERRORS ON MULTISENSOR TRACKING

2.1 INTRODUCTION

In this section, simple simulations are used to demonstrate the effects of alignment errors on
multisensor tracking. There are two basic levels at which multisensor tracking can be performed:
(1) sensor-level tracking with track-to-track fusion, and (2) central-level tracking with
measurement fusion. In sensor-level tracking with track-to-track fusion, each sensor maintains its
own local track file, where the tracks in the local track files are established and maintained using
raw measurements received from the local sensor only. The local track files are then sent to a
fusion center where they are combined into central-level (or composite) track files. In central-
level tracking with measurement fusion, each sensor reports its raw measurements directly to a
central processor, where a central-level track file is established and maintained using the raw
measurements. There are also several hybrid approaches which combine facets of both the track-
to-track fusion and measurement fusion approaches.

The effects of alignment errors on both sensor-level tracking with track-to-track fusion and
central-level tracking with measurement fusion are examined in this section. To simulate the
effects of alignment errors on multisensor tracking, first a true target trajectory is simulated. This
trajectory is for a constant velocity (CV) target that is closing and moving with a speed of Mach 1.
This true trajectory is then passed to functions that simulate two 3D sensors, which simulate the
sensors’ measurements in spherical coordinates (range, bearing, and elevation). These sensor
simulations introduce a bearing (or azimuth) bias into the measurements, and zero-mean Gaussian
measurement noise is also added to the spherical measurements. For simplicity, only the effect of
a bearing misalignment is examined. These simulated measurements are passed either to local
trackers (i.e., sensor-level tracking with track-to-track fusion) or to a single centralized tracker

(i.e., central-level tracking with measurement fusion).
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2.2 SENSOR-LEVEL TRACKING WITH TRACK-TO-TRACK FUSION

In sensor-level tracking with track-to-track fusion, each sensor maintains its own local tracks,
which are established and maintained using a local tracker that processes the raw measurements
received from the local sensor only, and the local tracks are sent to a fusion center where they are
associated with tracks from other sensors. Any associated tracks are then fused to produce an
updated state estimate. The track-to-track association and fusion functions are described in more
detail in Section 4.9. Briefly, the track-to-track association function is a statistical test that uses
the difference in the track estimates reported by the two sensors to determine the closeness of the
tracks. Those tracks that are close are assumed to be from the same physical target, and they are
said to be associated. The track estimates from the two sensors for an associated track can be
combined (or fused) using equations (4-63) and (4-64) to produce an estimate that theoretically is
more accurate than the track estimates produced by either sensor.

In these simulations, two 3D sensors are tracking the CV target, where one of the two sensors
is unbiased (i.e., no bearing bias) and only the other sensor has a bearing bias. The sensors
provide position measurements of the target with a period of 1 sec, and the measurements
reported by the sensors are synchronous. The local trackers at the two sensors are identical. The
trackers are extended Kalman filters that are designed for linear CV dynamics with piecewise
constant acceleration process noise. Each tracker uses its current position measurement in
spherical coordinates and its previous Cartesian state estimate and covariance to produce an
updatéd Cartesian state estimate and covariance.

For the first simulation, the effect of the bearing bias on track-to-track association is
examined. The bearing bias is held fixed, and the standard deviation in the accuracy of the
sensors’ bearing measurement is varied. The standard deviations in the range and elevation
measurements are fixed at 25 m and 0.2 deg, respectively. In the simulation, 100 Monte Carlo runs
were performed for each value of the bearing standard deviation. Figure 2-1 presents a family of
curves for the probability of associating the two tracks reported by the sensors on the same target
versus the noise standard deviation. Each curve represents a different fixed bearing bias. These
results indicate that track-to-track association is most affected by a fixed bias when the standard

deviation of the measurement noise is small with respect to the fixed bias. This occurs because the
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association algorithm is based upon the difference between the tracks in the presence of Gaussian
noise. When the noise standard deviation is small compared to the fixed bias, the bias causes the
difference between the tracks to be larger than that for which the association threshold is
designed, and the association test decides that the tracks are from different targets, even though
they actually originate from the same physical target. However, if the noise standard deviation is
comparable to the bias, the difference between the tracks is more likely to fall within thé region of
the distribution in which the tracks will be associated, and the degradation in performance is less

severe.

100 o— o

80

60
bearing bias =0 deg

40 o bearing bias = .25 deg
x bearing bias = .5 deg

+

bearing bias =1 deg

Probability of Associating Tracks

20

1 [ ] 1 1 [

0 0.2 0.4 0.6 0.8 1
Standard Deviation of Bearing Noise (deg)

FIGURE 2-1. PROBABILITY OF ASSOCIATING TRACKS VS. STANDARD DEVIATION OF
BEARING NOISE FOR FIXED BEARING BIASES

In the second simulation, the effect of the bearing bias on the accuracy of the fused state
estimate is examined. For simplicity, it will be assumed that the two tracks reported by the sensors

for the same target are associated; that is, no track-to-track association test is used. The two tracks
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are fused using equations (4-63) and (4-64). Again, the bearing bias is held fixed, and the standard
deviation in the accuracy of the sensors’ bearing measurement is varied. In this simulation,
100 Monte Carlo runs were performed for each value of the bearing standard deviation. The
results are presented in Figures 2-2 through 2-5, where the average Root-Mean-Square-Error
(RMSE) in position is shown for the separate tracks from each sensor and also for the fused track.
In Figure 2-2, the bearing bias was fixed at 0 deg, ar-ld it can be seen that the individual tracks are
nearly aligned, because their RMSEs in position are almost identical. The fused track RMSE is
lower than the individual sensor RMSEs, which indicates that fusing the tracks is advantageous
when the sensors are unbiased, which is an obvious result. If the sensor 2 bearing bias is increased
to 0.25 deg, as in Figure 2-3, the RMSE of the second sensor begins to increase as compared to -
that of the unbiased first sensor. However, the fused track RMSE remains below that of both
individual sensors, except when the bearing standard deviation is less than about 1 mrad (.06 deg),
so that it is seen to be advantageous to fuse the tracks even with a slight uncorrected bias. When
the bearing bias of sensor 2 is increased to 0.5 deg, it can be seen in Figure 2-4 that the fused track
RMSE is larger than that of the individual sensor RMSEs, unless the bearing standard deviation is
larger than about 5 mrad (0.29 deg). The trend continues as the sensor 2 bearing bias is increased
to 1 deg, as seen in Figure 2-5, for which the fused track RMSE is lower than the individual track
RMSEs only when the bearing standard deviation is greater than about 11 mrad (0.6 deg). One
must keep in mind that there is no alignment in this experiment. The trend indicates that it can be
advantageous to fuse unaligned tracks if the sensor bias is small, or if it begins to approach the
magnitude of the random noise, but, for a given bias, there is a limiting noise magnitude below
which fusing tracks do not improve the overall multisensor system performance.

The results of these simulations indicate that for sensor-level tracking with track-to-track
fusion, the presence of uncompensated alignment errors can seriously degrade the overall
multisensor system performance, and they may actually produce a performance that is worse than
that obtained using only a single sensor. The amount of degradation depends on the magnitudes of
the alignment errors and the magnitudes of the random noises present in the system. For example,
it may still be advantageous to employ sensor-level tracking with track-to-track fusion in the
presence of uncompensated alignment errors, if the magnitudes of the alignment errors are of the

same order or smaller than the magnitudes of the random noises. Of course, the best performance
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will be obtained if the presence of alignment errors can be detected, so that they can be estimated
and then removed from the multisensor data if they are large enough to cause serious degradation

in performance.

The RMSEs in the estimated velocity are not presented because the sensor bias had negligible
effect on the RMSEs in the velocity. This occurs because the sensor bias is an additive offset in the
measured bearing, the offset is constant, and each sensors’ measurements are processed locally.
Since the local filter basically uses a differencing technique to estimate the velocity, the effect of
the constant bearing bias is effectively eliminated in the sensor’s local estimate of velocity. The
fused estimate of velocity is ﬂot biased because the local velocity estimates are not biased. Thus,
the constant bearing bias has negligible effect on the velocity in sensor-level tracking with track-
to-track fusion. However, we will see below that this is not the case for central-level tracking with

measurement fusion because the multisensor measurements are processed centrally.

2.3 CENTRAL-LEVEL TRACKING WITH MEASUREMENT FUSION

In central-level tracking with measurement fusion, each sensor sends its raw measurements
directly to a central processor, which establishes and maintains a central-level track file using the
measurements. Measurements are associated to existing central-level tracks using contact-to-track
association, which is basically a measurement validation (or gating) procedure. Any associated
measurements are then used in a filter to update the existing track. Briefly, the contact-to-track
association function is a statistical test that uses the difference between the raw measurement and
the predicted measurement, which is obtained by predicting the existing central-level track to the
time of the raw measurement, to determine the closeness of the raw and predicted measurements.
If the measurement is close to the predicted measurement, the measurement is assumed to have

originated from the track; otherwise, it belongs to a different track.

In these simulations, two, 3D sensors are reporting measurements on the CV target, where one
of the sensors is unbiased (i.e., no bearing bias) and only the other sensor has a bearing bias. Each
sensor reports measurements with period of 1 sec, but they are offset by 0.5 sec. Thus, the
effective period for the measurements at the central-level processor is 0.5 sec. The central-level
tracker is an extended Kalman filter that is designed for linear CV dynamics with piecewise

constant acceleration process noise. The tracker uses the current position measurement in
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spherical coordinates and the previous central-level Cartesian state estimate and covariance to
produce an updated central-level Cartesian state estimate and error covariance. The central-level
track is initialized using only the measurements from the unbiased sensor. Actually, the central-
level track uses the first five measurements from the unbiased sensor before any of the
measurements from the biased sensor are used to update the central-level track. This is done to
ensure that the central-level track is fairly accurate and that there are no transient effects before
any biased data is used to update the track.

The effect of the bearing bias on contact-to-track association is examined first. In the
simulation, if the CV track does not have an associated measurement for three consecutive update
periods, the CV track is defined as a lost track and it is terminated. The bearing bias is varied, and
the standard deviations in the range, bearing, and elevation measurements are fixed at 25 m, '
0.2 deg, and 0.2 deg, respectively. In the simulation, 100 Monte Carlo runs were performed for
each value of the bearing bias. The performance degradation due to the bearing bias is manifested
in a large percentage of lost tracks. This can be seen in Figure 2-6, which presents the percentage
of lost tracks versus the bearing bias. It can be seen that no tracks are lost when there is no bearing
bias. As the bias increases, the number of lost tracks increases until 100 percent of the tracks are
lost. Obviously, a central-level fusion system with this kind of bias problem would be severely
dysfunctional.

In the next simulation, the effect of the bearing bias on the accuracy of the central-level state
estimate is examined. For simplicity, it will be assumed that the measurements reported by the
sensors are associated to the track; that is, no contact-to-track association test is used. Again, the
bearing bias is varied, and the standard deviations in the range, bearing, and elevation
measurements are fixed at 25 m, 0.2 deg, and 0.2 deg, respectively. In the simulation, 100 Monte
Carlo runs were performed for each value of the bearing bias. The results are presented in
Figures 2-7 and 2-8, which show families of curves representing the RMSE in position and speed,
respectively, as functions of time for various values of the bearing bias. It can be seen that for each
individual bias, the RMSE periodically rises because of the bias error in the sensor 2
measurement, and falls with the arrival of the unbiased sensor 1 measurements. As the bias is
increased, the magnitude of these fluctuations increases dramatically. Note that the problem is
nonexistent when there is no bearing bias. The results of these simulations indicate that for
central-level tracking with measurement fusion, the presence of uncompensated alignment errors

can produce dramatic system inaccuracies and the inability to maintain track on a target.
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3.0 THEORY FOR RELATIVE ALIGNMENT OF 3D SENSORS

3.1 INTRODUCTION

The first step in solvingi the alignment problem for two 3D sensors is to decide which
alignment errors are to be modeled. Two separate sources of alignment errors are included in the
formulation of the problem in reference (2) - attitude errors in the reference frames of the sensors
and offset errors in the measurements reported by the sensors. Sensor location errors are not
included because the relative locations of sensors on a single platform can be accurately
determined in an initial calibration procedure. Similarly, timing errors are not included because all
of the sensors on a single platform can use a single centralized clock. Because of the method used
to formulate the problem, it is not possible to determine the alignment errors in the individual
sensors.? It is only possible to estimate the relative alignment errors between the sensors. This is
sufficient to align one sensor relative to the other sensor; that is, one sensor is chosen as the
master or primary sensor and the other sensor is aligned to it.

Below, the transformation between the reference frames of the sensors is considered first. This
is followed by a presentation of the basic equations from reference (2) that are used to align the

sensors. Finally, the estimation of the alignment parameters is discussed.

3.2 TRANSFORMATION BETWEEN REFERENCE FRAMES

Consider a particular sensor, say the k'™ sensor, where k = 1, 2. A reference frame is necessary
in describing its measurements. The reference frame in which the measurements are made will be
called the measurement frame. A 3D sensor measures the spherical coordinates (range, bearing,

and elevation) of a target; the spherical and rectangular coordinates in the measurement frame,

3-1
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and the relationship between them, are illustrated in Figure 3-1. There is also a stabilized frame
associated with this sensor. The stabilized frame is aligned to the true north-south horizontal line,
the true east-west horizontal line, and the axis that is orthogonal to the horizontal plane formed by
the north-south and east-west lines. For a fully stabilized sensor, the measurement and stabilized
frames are the same provided there are no bias errors in the gimbals; however, for unstabilized and
partially stabilized sensors, both frames have the same origin, but one frame is tilted with respect

to the other one.

zk
g
r, = range
8, = bearing
g, = elevation
Tk
X, = rkcoseksmek
_ €
Y = TyCOS€,C080, k Yk -,
z, = r,sine
k k k ek
Xk
exk

FIGURE 3-1. SPHERICAL AND RECTANGULAR COORDINATES
IN K™H SENSOR’S MEASUREMENT FRAME
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T T
Let the column vectors r, = [xk Yy zk] and r', = [x'k Y k:l (the superscript T denotes

matrix transposition) represent the position vectors of a point (in rectangular coordinates) in the

measurement and stabilized frames, respectively, of the k™ sensor. The transformation from the

measurement frame to the stabilized frame is given by
ry=Rr, (3-1)

where R, is the 3x3 orthogonal matrix given by

cosnkcosd)k sin\pksinnkcosd)k— coswksincbk coswksinnkcos¢k+ sin\pksind)k
R, = cosnksind)k sin\uksinnksin¢k+ cosq/kcosd)k coswksinnksind)k——sin\ykcosd)k (3-2)
-sinn cosm, siny, cosm, cosy,

and the yaw angle ¢, , the pitch angle n,, and the roll angle y, are a set of Eulerian angles

giving the orientation of the measurement frame in the stabilized frame (see Figure 3-2, where the
primed and unprimed triads represent the stabilized and measurement frames, respectively). For a
fully stabilized sensor, the yaw, pitch, and roll angles are zero provided there are no bias errors in

the gimbals. For unstabilized and partially stabilized sensors, these angles need not be zero.

T
Let the second sensor (k = 2) be located at the point £ = [tx ty tz] in the stabilized frame of

the first sensor (k = 1). Since there are no location errors, the vector ¢ is assumed to be known. Let

r, be the position vector of a target reported by the second sensor in its measurement frame. The
transformation of r, to the measurement frame of the first sensor is given by2

T
ryo= Rr2+R1t (3-3)

where r,, represents the corresponding position vector in the measurement frame of the first

sensor, and

(3-4)

3-3
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€xk
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FIGURE 3-2. STABILIZED AND MEASUREMENT FRAMES FOR K™ SENSOR

Equation (3-3) represents the transformation of a position vector from the measurement frame

of the second sensor to the measurement frame of the first sensor. The matrices Ry, R,, and R

depend on the values of the Eulerian angles (yaw, pitch, and roll) at the two sensors. If these

Eulerian angles contain no bias errors, then, assuming there are no offset nor random errors in the

sensors’ measurements, r,, will be the same as r,, which is the position vector of the target

reported by the first sensor in its measurement frame. However, if the Eulerian angles contain

uncompensated bias errors, the transformation in equation (3-3) is performed using incorrect

3-4
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values for the Eulerian angles and, consequently, r;, and r; will be different. In this case, r;,

does not represent the target position vector in the measurement frame of the first sensor because

it was computed using incorrect values for the Eulerian angles; by definition, r, always

represents the position vector of the target in the measurement frame of the first sensor.
Although equations for transforming the velocity and acceleration vectors from the
measurement frame of the second sensor to the measurement frame of the first sensor are not

given in reference (2), they can be derived by taking time derivatives of equation (3-3):

T 2 2T
_ dr_ IR, _ dR. dR IR,
Vi, = Rv2+5r2+5 t a;,, = Ra2+2;l_t v2+_5r2+_2_ t (3-5)
dt dt
T T

where Vv, = drz/dt = [vzx Vay v2z:| and a, = dvz/dt = [azx azy aZz] are the velocity and
acceleration vectors (in rectangular coordinates) of the target reported by the second sensor in its
measurement frame, v, and a,, represent the corresponding velocity and acceleration vectors in

the measurement frame of the first sensor. Similar to the discussion in the previous paragraph, if

the Eulerian angles and their rates contain no bias errors, v, and @, will be the same as v, and

a , respectively, which represent the velocity and acceleration vectors of the target reported by

the first sensor in its measurement frame. However if the Eulerian angles or their rates contain

uncompensated bias errors, the transformations in equation (3-5) are performed using incorrect

values, then the velocities Vi, and v, will be different, and the accelerations a, and a, will also

be different.

3.3 ALIGNMENT EQUATIONS

The attitude bias errors are modeled as additive, constant biases to the reported values of the

yaw ¢, , pitch n, and roll y, angles at the k'™ sensor; that is,

¢k, true ¢k + Ad)k nk, true Mg + Ank \Vk, true Vi + AWk (3-6)
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where ¢ k true’ Mk, true’ and y k. true € the true values of yaw, pitch, and roll angles at the kh

sensor, and A¢ K An o and Ay § are the bias errors in these angles. Bias errors in the rates of the

Eulerian angles are not modeled in reference (2). The k'™ sensor reports the range r, , bearing 8, ,

and elevation ¢, of a target, which are expressed in the measurement frame of the k't sensor. The

sensor offset errors are also modeled as additive constant biases to the estimates:
Tk true = 9k+A9k = 8k+A8k (3-7)

The relationships between the track data from the sensors and the alignment errors are derived

=T + Ark ek, true 8k, true

assuming that the alignment errors are small quantities and using a first-order Taylor series -

approximation to linearize the alignment problem. The alignment is accomplished in reference (2)
using five bias parameters (four angular biases and one range bias): the bearing bias A®, pitch
bias An, roll bias Ay, elevation bias Ag, and range bias Ar. These biases are defined by
AB = Ad +A62—A€)1 An = An,-An, Ay = Ay, - Ay,
Ae = Ag,—Ag, Ar = Ar,—Ar,

(3-85

where
A¢ = Ad, - A9, (3-9)
The definitions of these five biases imply that the alignment errors at the individual sensors cannot

be determined; it is only possible to estimate the relative alignment errors between the sensors. In
addition, the definition of the bearing bias AO implies that yaw bias errors cannot be

distinguished from bearing offset errors.

The basic equation to align a position vector reported by the second sensor to the
measurement frame of the first sensor (which is the master sensor) is given by2

r, = r12+Cb (3-10)

1

where

b = [A® An Ay As At (3-11)

is the bias vector and C is the matrix defined by
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Y1z I 0 —zppsin®, xpp /1
0 Ty TZpC080 5 y,/T, (3-12)
0 Xi9  “Yip  T1pC0S€,  Z1p/Tp,

where x,,, y;,, and z,, are the components of r,, in rectangular coordinates, and the range
ry,. bearing 0,,, and elevation &, are the components of r , in spherical coordinates.

Assuming that the bias vector b is known, the alignment of a position vector r, from the
measurement frame of the second sensor to the measurement frame of the first sensor is
accomplished by the following procedure. First, equation (3-3) is used to transform the position

vector r, reported by the second sensor using the reported values of the yaw, pitch, and roll
angles; this produces r,,. The matrix C in equation (3-12), which depends only on r,, is
calculated. Equation (3-10) is then used to align r, to the measurement frame of the first sensor.
This éroduces r,, which is the position vector aligned to the measurement frame of the ﬁrsf

sensor. If the first sensor reports the position vector of the target, it will coincide with r; (in the

absence of random errors). However, this alignment can be performed even if the first sensor is
not tracking this particular target; of course, a common target must be used to determine b .
Although equations for aligning the velocity and acceleration vectors to the measurement
frame of the first sensor are not given in reference (2), they can easily be derived by taking time
derivatives of equation (3-10) and using the assumption that b is a constant vector (i.e., the

alignment errors are constants). The equations to align velocity and acceleration vectors reported

by the second sensor to the measurement frame of the first sensor are given by

2
+25 (3-13)

dt
Assuming that the bias vector b is known, the alignment of the velocity and acceleration vectors
to the measurement frame of the first sensor is similar to the alignment of a position vector

= dc -
Vp =Vt b a1 =8y

described in the previous paragraph.
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3.4 ESTIMATION OF ALIGNMENT PARAMETERS

Since the truth is not observable, neither sensor is able to detect its own biases with respect to
the truth. Thus, the bias estimation algorithm makes use of one or more tracks of targets common
to both sensors to estimate relative correction parameters to align the data from the two sensors.
This means that data from one of the sensors (sensor 2) is corrected so that it aligns in position,
velocity, and acceleration with the data from the other sensor (i.e., sensor 1 is the master sensor),
even though neither sensor may be aligned with the truth. To accomplish the alignment, the data
from the second sensor is first expressed in the measurement frame of the master sensor using the

reported values of roll, pitch and yaw, and the known translation vector between the sensors. The
alignment vector y is defined as the difference between the position reported by the master sensor
and the position reported by the second sensor, as expressed in the frame of the master sensor:

y = rl—r12 (3'14)

where, as defined in equation (3-10), r, is the vector position of the target as measured by the
master sensor, and r is the vector position as measured by the second sensor, but expressed in

the measurement frame of the master sensor; that is, one corrects the second sensor’s position
vector as expressed in the master sensor's frame by adding to it the alignment vector. Using
equation (3-10), the alignment vector can also be expressed as a linear combination of the sensor

bias parameters,

y = Cb, (3-15)

where C is defined by equation (3-12) and b is defined by equation (3-11).

Note that the bias parameters are functions of the differences between the biases, not the
biases themselves, because the individual biases are not observable. Also, there is coupling
between some of the bias equations, which results in the bias parameters being functions of more
than one of the six biases. For example, as seen in equation (3-8), the bearing bias and the yaw

bias are inseparable, because they both result from offsets in the same plane. Thus, the parameter

A9 is a function of both the bearing and yaw biases.

3-8
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Assume that both sensors are tracking a common target, and let r; and r, be the position

vectors of this target as reported by the first and second sensors, respectively, at the same point in

time. Then r;, and C can be computed, and equation (3-10) can be used as a measurement

equation of the bias vector by expressing it as

y=r-r,= Ch+e (3-16)

1
where the random measurement error vector e is now included in the problem. It is possible to

apply Kalman filtering techniques to estimate the bias parameter vector b recursively. Since the
errors in the sensors’ measurements are assumed to be white noise sequences, the error e is also a

white noise sequence when position measurements are used to obtain y. However, when y is
obtained using position estimates from the tracking filters associated with the sensors, e is not a
white noise sequence. This is due to the time-correlated estimation errors from the tracking filters.

In reference (5), it was assumed, for simplicity, that e is a white noise sequence so that standard

estimation results could be easily applied to the problem.

Note that r,r,, and therefore ry, are assumed to be time-coincident quantities. Since the

sensors are asynchronous, the state estimate reported by the second sensor must be time aligned to
the estimate reported by the master sensor. This is done by predicting the most recent estimate
from the second sensor to the time of the current estimate for the master sensor. To improve the
accuracy of the predicted estimate, one-step, fixed-lag smoothing may also be performed. The
effectiveness of these time-alignment techniques is studied in the next section in a series of
simulations.

It is possible to separate the range bias equation from the angular bias equation, and to
estimate them using separate filters. This is advantageous because the contribution of the range
bias Ar to the alignment error is usually much smaller than that due to the angular biases. By
decoupling, difficulties in estimating the range bias are avoided. It can be shown that the

measurement equation in equation (3-16) can be reduced to the following two decoupled

measurement equations:?

m = Ar+e, z=Hd+v (3-17)

3-9
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where the measurement m, is defined by m_ = r, —r,,, e, is the measurement error in m,, the

measurement zZ is defined by

T
z= [(91-—912) (81——812)] : (3-18)

v is the measurement error in z, d is the angular bias vector defined by

T
d =[50 An Ay Ag] - (3-19)
and H is the matrix given by

H = 1 —tanslzcose12 ——tanslzsin()12 0 (3-20)
0 sine12 —cosG12 1

Clearly, m = Ar+e, is the measurement equation for the range bias, and z = Hd +v is the

measurement equation for the angular biases.

' : 2 . . 2 2 2 2
The variance o, of the measurement error e, is approximated by 6 ~ o , + o ,, where o,

2 . . . . .
and ¢, are the variances in the ranges that are computed using the error covariance matrices

from the tracking filters for the first and second sensors, respectively. Note that the computation of

2. . . . .
o, ignores the correlation between the estimation errors in the tracks of the common target from

the two sensors that arises from the common process noise in the dynamics;7’8 that is, the tracking
errors from the two sensors for a common target are dependent, but they will be assumed

independent for simplicity. Similarly, using this assumption of independence, the covariance

matrix W of the measurement error v is approximated by

2 2
W (cg; +5g)) (P1961%1 + P2%92%52) (3-21)
2 2
(P1591%¢1 * P25920¢)) (Og1 +0g))
2 2 . . . . . .
where Cgx> Ock> and p § are the azimuth variance, elevation variance, and correlation coefficient

between the azimuth and elevation that are computed using the error covariance matrix from the

tracking filter for the k™ sensor.

3-10




NSWCDD/TR-94/285

4.0 METHOD OF SIMULATION

4.1 INTRODUCTION

The simulation of the tafgets, tracking, and alignment process are described in this section.
Also, the implementation of the bias parameter estimation algorithm is discussed and further
developed. In the simulation, the bias filters run concurrently with the tracking filters. After
initializing the tracking filters with several data points, a few more data points are required to
initialize the concurrently running bias estimation filters. The bias estimation algorithm requires
state estimates or measurements from each of the two sensors, and for one or more common
targets. Using more than one common target provides quicker convergence because the system of
equations to be solved is then specified by more equations in the same number of unknowns. Once
the bias estimation has been initialized, the alignment of the second sensor track can proceed
along with the tracking, so that at each time step, a corrected state estimate is produced. The
corrected state estimate from the second sensor and the state estimate from the master sensor can

then be passed to an association algorithm. These processes are discussed in more detail below.

4.2 FORMATION OF SIMULATED TRAJECTORIES

To simulate the alignment of two sensors, the first requirement is to obtain simulated frue
trajectories for two or three targets. One or two of the targets will be used to estimate the bias
parameters, and the third one will be corrected using the estimated alignment vector. In theory,
once it has been estimated correctly, the alignment should work for the track of any target being
observed by the second sensor, not just for the one(s) used to estimate the biases. The simulated
trajectories are initially generated in Cartesian coordinates. The true trajectories are then altered

so that they realistically represent noisy, biased tracks from separate sensors, in the following
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manner. First, the data for the second sensor is translated in position by subtracting from it the
constant vector ¢, representing the location of sensor 2 relative to sensor 1. The measurements of
the master sensor are then computed at a shifted set of times to simulate asynchronous
measurements. Each sensors’ data is transformed into its own measurement frame by a rotation
corresponding to the magnitudes of the specified roll, pitch and yaw biases. The trajectories are
then sampled at a desired rate, assuming the sample rate of the original trajectory is higher than
the one desired. The preliminary processing of each trajectory is completed by converting the
Cartesian measurements to spherical coordinates, adding to each spherical coordinate zero-mean
Gaussian noise with a standard deviation corresponding to the assumed accuracy of the radar, and
adding specified constant biases to the range, bearing and elevation from each sensor. The data for
the three trajectories are then ready to be passed into the tracking loop, to simulate the processes

of tracking, time alignment, bias estimation, and track association.

43 TRACKING

Each target is tracked by each sensor using either a single model Kalman filter or an
Interactive Multiple Model (IMM) algorithm.6 The filters use the current spherical coordinate
sensor measurements, and the previous Cartesian state estimates and covariances to produce
updated Cartesian state estimates and covariances. The single model filter can employ any
practical dynamical model, such as CV or Constant Acceleration (CA). The IMM algorithm in
this report uses both of these models, producing model-conditioned state estimates and

covariances as well as a combined state estimate and covariance.

4.4 TIME ALIGNMENT

In this section, two techniques used in the time alignment of data from two asynchronous
sensors are discussed. The first is prediction of a state estimate to a future time, and the second,

which may be applied to the predicted estimate to improve its accuracy, is one-step, fixed-lag

smoothing.

4-2




NSWCDD/TR-94/285

(1) (1) (1) 1 ¢Y 1)
) 2 I3 2 Is le

Sensor 1 —@— @ @— @ —@ @ -

Sensor 2 o —© o ® o —© L ® —@- ©® o
2) 2) 2) 2) (2) 2) @ .2 (2) (2) (2)
3 ™ I " 15 s ;7 &g g~ Iip

FIGURE 4-1. TIMES OF STATE ESTIMATES REPORTED BY TWO SENSORS
FOR A SINGLE COMMON TARGET

The principal difficulty in alignment is time-translating the data from the two sensors to a
common point of time. This situation is illustrated in Figure 4-1, where the two sensors are
providing state estimates for a single target at different times and at different rates. In Figure 4-1,

tj(l) denotes the time that the j* state estimate for the target was reported by sensor i. One method

to handle this problem is to predict the state estimates from the second sensor forward in time to

. 2
match the times of the first sensor. For example, the state at t2( ) from the second sensor would be

(2) (N

1 .
(0 , the state at 7, " from the second sensor would be predicted to t; 7, etc. A

predicted to t

second method would use both the one-step predictor and a one-step, fixed-lag smoother. For

example, the state at t2(2) from the second sensor would be predicted to t2( 1), then the

2 . . . .
measurement at t3( ) from the second sensor would be used to improve this predicted estimate at

D . . 2 .
t2( ) (i.e., one-step smoothing); the state at ¢ i ) from the second sensor would be predicted to

(1 )

t; 7, then the measurement at s from the second sensor would be used to improve this

(1)

predicted estimate at z; “ ; etc. Since one-step, fixed-lag smoothing provides an estimate that lags

the most recent measurement by one sampling period, it is not a real-time process. However, it is
near real-time and the time lag will not be a serious problem in estimating the alignment errors

because the alignment errors are assumed constant or slowly varying with time. Also, smoothing
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will provide additional noise variance reduction over prediction and filtering, which is important
because the alignment algorithm uses differences in target positions as reported by the sensors to

estimate the alignment error

4.5 PREDICTION

The bias estimation algorithm does not permit the use of asynchronous estimates or

measurements from the two sensors. Therefore, after computing the filtered state estimates for

both sensors, it is necessary to time align them; i.e., use the current state estimate, covariance, and

dynamical model for one of the sensors to estimate the state at a short time in the future at which
an estimate for the other sensor already exists. An algorithm that performs this task is called a
predictor. Both single and multiple-model predictors are used in the simulation, depending on
which tracking filter is used. The single model predictor takes the current Cartesian state vector to
be predicted, its covariance matrix, the time at which the predicted state is to be computed, and
the process noise variance, and produces the predicted Cartesian state vector and the predicted
covariance matrix at the predicted time. The multiple-model predictor uses the current model-
conditioned Cartesian states and covariances from the IMM algorithm and produces the predicted
model-conditioned Cartesian state estimates and covariances and a combined predicted Cartesian

state estimate and covariance for output.

4.5.1 Single-Model Prediction

For the single model case, the linear system dynamics are modeled as

X

ko1 = B+ G Wy 4-1)

with observations
Zk = Hka+ Vk 4-2)
where X X is the system state at time ts Zk is the measurement vector, and F o Gk’ and H , are

the system matrices. The W, and V| are mutually uncorrelated, zero-mean, white Gaussian
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errors with covariance matrices Q, and R, , respectively. Single-model prediction is governed by
the following equations
State estimate prediction: X, . 1k = F X K|k 4-3)
Covariance prediction: Py, 1, = FyPyFy + G0, Gy (4-4)

where X T and P K|k are the filtered state estimate and associated error covariance, respectively,

and X, 1k and P, 1k are the one-step predicted state estimate and associated error

covariance, respectively.

4.5.2 Multiple-Model, One-Step Prediction Algorithm for Alignment
In the IMM algorithm,6 the system (called a Markovian switching system) is assumed to obey

one of a finite number of models and there is a given probability of switching between the models.

The event that model j (j = 1, ..., n) is in effect during the sampling period ending at time 7, will

be denoted by M;C The system dynamics and observations are modeled as

Xy = F{c—lxk-l'*ch—lWic—l (4-3)

and
Z, = HX, +V, (4-6)
where X 3 is the system state at time ¢, , Z X is the measurement vector, and F;c _1 G;c _1 and H;c

are the system matrices for M;( The W’L_ , and V;C are mutually uncorrelated zero-mean white

Gaussian errors with covariance matrices Q;c_ , and R;c , respectively. The switching between the

models is assumed to be a Markov process with known transition probabilities

i
b = P{M;ch—l}'

4-5
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In the one-step predictor, the estimate of the state X, at time 7, is computed using the set of
Zk -1 . . .
past data Z, = {Z,,...,Z,_,,Z,_;}, and this estimate is denoted by Xk]k— ,- For

Markovian switching systems, the one-step predicted estimate can be approximated by computing
it under each possible model hypothesis over the current sampling period. Using the total

probability theorem for the n model hypotheses in effect over the current sampling period, the

density function of the state X, given le( -1 can be expressed as
‘ n
-1 - j -1
fxgd™] = Zolnpms™ ] @
j=1
where Ej =P {ML’Z’I - 1} is the one-step predicted probability for M’ ,and f [X kIM] , lec -1 :|

is the model-conditioned density function of X, matched to M;c Both Ej and the model-

conditioned estimate Xll;l 1 based on f I:X k|M" , lec -1 ] are computed in the IMM filtering

algorithm. The only calculation needed in the one-step predictor that is not performed in the IMM

ﬁltering algorithm is the computation of the one-step predicted estimate X Kk-1 based on

f I:X k|Z’;_ 1] when all models are considered. Equation (4-7) represents f [XklZ];— 1] as a

mixture of densities, which are assumed Gaussian. This Gaussian mixture can be approximated by

a single Gaussian,® which gives X k-1 8 3 probabilistic sum of the model-conditioned

estimates Xi‘l 41 and is presented as follows in Step 3.

One cycle of the multiple-model, one-step prediction algorithm for n models is summarized in
the following three steps.
Step 1: Mixing of the State Estimates

The prediction process starts with the filtered state estimates X;{_ k-1 matched to M;C_ 1

associated error covariances P;C k-1 and model probabilities p;c _ from the IMM filter. The
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. . 0j .
mixed state estimate X’ k-1 for M‘L is computed as

X k-1 = ZX—llk 1”k—1|k-1 (4-8)
where
ilj 1 i
Me-1jk-1 = 2Pyt (4-9)
v

and the normalization constant Ej is given by

n
- i
C_] = Z pijp’k—l (4-10)
i=1
where P;j is the assumed transition probability for switching from model i to model j. The error

. 0j . . 0j .
covariance P, k-1 associated with X" 1k-118 computed as
k 1|k—-1 Zl’lk 1|k- ll: k- 1|k—1
4-11)

i 0j i 0j T]
[Xk— k-1~ Xk— 1)k 1:| [Xk— k-1~ %k-1]k- 1]
Step 2: Model-Conditioned Predictions

The one-step predicted estimate Xil k-1 matched to model M;(, and associated covariance

Pf‘l 1> are computed as
X;q - “Fi IXk 1lk-1 (4-12)
P;qk ‘Fi P ~ 1]k~ 1(FJ 0, +G§< 1Q] 1(G/ 1) (4-13)

The predicted model probability for M;( is given by Ej, which is calculated in Step 1.

Step 3: Combination of State Estimates

The one-step predicted state estimate X k-1 and error covariance Pkl 1 for output are

given by




NSWCDD/TR-94/285

Xk-1 = 2 EjX;clk—l (4-14)
j=1

n

Prk-1= ) Ej[P;c|k—1+ I:X;qk—l_Xklk—l:I I:Xic[k—l_XHk——l]T:I (4-15)

j=t

The time translation of the estimates from the second sensor using the multiple-model, one-

step predictor is implemented as follows. The time of the most current filtered estimate from the

first sensor (i.e., the master sensor) is obtained; denote this estimate by X I£| k) , which is valid at

. 1 . . ..
time t,E ) , the time of the first sensor’s most current estimate. The model-conditioned filtered

. . . 1 .
estimates from the second sensor that immediately precedes t,f ) are obtained; denote these

x®J (2

model-conditioned estimates by T which are valid at time 7, the time of the second

(1

sensors’ estimates that immediately precede f, " . The multiple-model, one-step prediction

algorithm is used to predict the second sensors’ estimates from time tl(z) to t,fl) (by letting
te oy =1 =1 and X, = X"/ inthe algorithm), and the model-conditioned

. . 2),Jj . . 2
predicted estimates X ’EI k) _]1 and the output predicted estimate X lfl k) _ for the second sensor at

. 1 . . . . 1 2
time tlg ) are obtained. The time-coincident estimates X ,E| k) and X ng k) _ from the two sensors

are then passed to the alignment algorithm described previously.

4.6 ONE-STEP, FIXED-LAG SMOOTHING

One-step, fixed-lag smoothing uses the past and present data to compute the state estimate
one-step behind the present time. Since one-step, fixed-lag smoothing estimates a past state, it is

not a real-time process; however it is near real time since it provides an estimate that lags the




NSWCDD/TR-94/285

current measurement by one sampling period. To improve the accuracy of the predicted estimates,
this type of smoothing is employed in the simulation. As with the predictor, there are both single
and multiple model smoothers, depending upon the tracking filter that is in use. If smoothing is
used, the predicted estimates are smoothed prior to the estimation of the bias parameters. Fixed-
lag smoothers are discussed in detail in reference (6), and a detailed description of one-step, fixed-

lag smoothers for Markovian switching systems is given in reference (4).

The single model one-step, fixed-lag smoothing algorithm, as used in the simulation, is
slightly different than the standard one-step, fixed-lag smoothing algorithm. In the standard
smoothing algorithm, the smbothed estimate is computed as a correction to a filtered estimate.
However, in the smoothing algorithm used in the simulation, the smoothed estimate is computed
as a correction to a predicted estimate. The reason is that the one-step predictor is used to time
translate the estimate from the second sensor; then, the one-step smoother is used to improve the
accuracy of this predicted estimate by processing the future measurement from one-step ahead.

The one-step, fixed-lag smoothing algorithm used in the simulation is briefly summarized.

4.6.1 Single-Model, One-Step, Fixed-Lag Smoothing Algorithm

Step 1: Predict the State and Covariance

Start with the one-step predicted estimate X k-1 and associated error covariance P Kk -1
from the one-step predictor at time #, . These quantities are then predicted to time #, _ , using

Xerth-1 = FiXik-1 (4-16)

T T
Piite-1=FilPrp-1Fr + GO 4-17)

Step 2: Compute the Residual

The residual Z . k-1 and its covariance S, k-1 are computed by

Zk+1ik—1=Zk+1‘Hk+1Xk+1|k-1 (4-18)

S ~H P oY

ke tpk-1=Heo tProp-1Hee 1 + R

k+1 (4-19)

4-9
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Step 3: Compute the Smoothing Gain W, k-1

T T -1
Wietik-1= Prgk= 1P e 1554 k-1

Step 4.: Update the Smoothed State and Smoothed Covariance

(4-20)

The smoothed state X Kk + 1 and associated error covariance P Klk+ 1 are computed by

Xigk+1= X1t Weew 1= 12k + 1k 1 (4-21)
Prks 1= Prp—1™ Whw 1k- 15+ 1|k—1W/€+ k-1 (4-22)

The multiple-model smoothing algorithm is more complicated because it requires model-
conditioned updates for the state estimate and covariance matched to each model, model
probability updates, and combination of the state estimates. The multiple-model smoother also
produces a combined state estimate and covariance for output. The following is a summary of the

multiple-model, one-step, fixed-lag smoothing algorithm.

4.6.2 Multiple-Model One-Step Fixed-Lag Smoothing Algorithm

Derivation and detailed explanation of the one-step fixed-lag smoothing algorithm for
Markovian switching systems are given in reference (4). The only difference between the
smoothing algorithm in reference (4) and the one used in this report is that the smoothed estimate
in reference (4) is computed as a correction to a filtered estimate, while we will take the smoothed
estimate as a correction to a predicted estimate. The reason for this is that the multiple-model,
one-step predictor will be used to time translate the estimates from the second sensor as in the
previous section; then, the one-step smoother will be used to improve the accuracy of the
predicted estimate by processing the future measurement from the stage one-step ahead. One
cycle of the one-step, fixed-lag smoothing algorithm for » models is summarized in the following

four steps.

Step 1: Mixing of the Residuals

Start with the one-step predicted estimates Xi‘l (1 from the multiple-model, one-step

predictor matched to model M;C at time tes the associated error covariances P;(l -1 and the

4-10

S e SR e SRR e S,
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corresponding model probabilities Ej. Then, for each model M;.C +1 in effect over the sampling

period ending at time t, . 1> compute
X;;|il|k—1 = Fkaiqk 1 (4-23)
P = PP 1 () + GGG @2
Zk|]+1|k 1=Z 4 H;c+1XkI]+1[k (4-25)
S;‘c|1+1|k—‘1 Hk+1 k+1|k H;c+1) +Rk+1 (4-26)
A;;l];r1|k-1 = 1 exP[ 2(Zk|]+1|k I)T(Sjcliukq) 1Z;cl]+1|k 1] (4-27)

A/det( Z“S;c'i k- 1)

The mixed values input to the smoother matched to model ML are computed as

Y n _ilj _
Z;c+1|k—1 = ZP Zi 4 1|k-1 - (4-28)

i=1

'|J
k+1|k—1 = ZP,;I: k+1k-17

i=1 (4-29)
i Zl ~ilj ~J T
[Zk+1|k-1— k+1|k—l:|[zk+1|k—1— k+1|k-—1]
k+1|k—1 ZP,; k+1]k=1 (4-30)
T
Zp ((FY) e D) (4-31)

where Pj; is the assumed transition probability for switching from model M;( to model M;C ‘1

Step 2: Model-Conditioned Updates

The one-step, fixed-lag smoothed estimate Xil k +1 and covariance P;cl ¢+ 1 matched to model

M;( are computed as

4-11
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J J ‘ =
Xetk+1 = Xiji- +W§<+1|k-12;€+1lk—1 (4-32)
: T
P;c|k+1 ‘P;qk 1 W;c+1|k 1S;c+1|k (W;Huk-l) (4-33)

where the smoothing gain is given by

. . -1
W;c+1|k 1= P;c|k IT;c+1(S;c+l|k—l) (4-34)

Step 3: Model-Probability Updates

The one-step, fixed-lag ‘smoothed model probability “]l;| 4+ 1 matched to model M;c is

computed as

J _ 1=
M1 = 258 % 161 (4-35)
where
Y
d= 2 Ak s 1jk-1 ) (4-36)
j=1

and c ; 1s the one-step predicted model probability for model M;c

Step 4. Combination of State Estimates

The output one-step, fixed-lag smoothed estimate X Kk +1 and corresponding error covariance

Pk| PR computed as

_ J J
Xek+1 = 2 Wtk + 1%k + 1 (4-37)

j=1
n . .
_ j J J
Prks1 = Z”k|k+l|:P;c|k+l [Xk|k+1 Xk|k+1:| [Xk|k+1 k|k+1]7] (4-38)
j=1

The multiple-model, one-step smoother is implemented as follows. The time of the most

current filtered estimate from the first sensor (i.e., the master sensor) is obtained; denote this

(D (D

estimate by X PTE which is valid at time P the time of the first sensor’s most current estimate.

4-12
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Identical to the discussion in the previous section, the multiple-model, one-step predictor is used

. " . . 2),j .
to obtain model-conditioned, one-step predicted estimates X ’EI k) _] y for the second sensor, which

. . 1 . .
are valid at time t,f ). The measurement from the second sensor that occurs immediately after

(D

T

. . . 2 . 2 .
is obtained; denote this measurement by ZIE +)1 , which occurs at tlf +)1 . The multiple-model,

one-step, fixed-lag smoothing algorithm above is used to process this measurement, and the

. 2 . 1) . . .
output smoothed estimate X’EI k) .1 for the second sensor at time t,f ) is obtained. The time-

. . 1 2 )
coincident estimates X IEI k) and X ’EI k) .1 from the two sensors are then passed to the alignment

algorithm.

Although both the single-model and the multiple-model algorithms assumed a linear
measurement model, it is straightforward to include a nonlinear measurement model in these
algorithms. In the simulations in this report, the tracking algorithms actually used a nonlinear
measurement model, which represented the transformation from Cartesian to spherical

coordinates.

4.7 BIAS PARAMETER ESTIMATION

The bias estimation algorithm requires time-coincident state estimates, or synchronous raw
measurements from each of the sensors (or a measurement from one sensor and a time-aligned
estimate from the other). For asynchronous estimates, the prediction and smoothing algorithms
can be used to provide time-coincident estimates to the alignment algorithm. Since the estimation
is performed iteratively, the bias parameter estimates and covariances from the previous step are
also required, along with the assumed standard deviations of the measurements, the process noise,
and the vector ¢ that gives the relative location between the sensors. The algorithm produces

updated bias parameters and covariances. The model for the biases is given by

Dynamics: b,=b,_,+u,_, (4-39)
Measurements: y=Chb+e (4-40)

4-13
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wherey = r, -ry is the measurement of » and e is the random error in the measurement. Note
that r, and rq, are assumed to be time-coincident quantities.

It was found that decoupling the range and angular biases during estimation produced more
accurate results. This was done in reference (2) by algebraically manipulating the vector bias
equation in equation (4-40), and making small angle approximations. The bias parameter
estimation algorithm proceeds as follows:

Step 1. Express the Position Vector of the Target Reported by Sensor 2 in the Measurement
Frame of the Master Sensor (Sensor 1).

Expressing the position vector of the target reported by sensor 2 in the measurement frame of

the master sensor requires that the sensor 2 position vector be transformed into its own stabilized

frame, then translated to the stabilized frame of the master sensor, and finally rotated into the

measurement frame of the master sensor:

T T
r, =RRr +Rt (4-41)

12
This equation was simplified in reference (2) by expanding R, in a Taylor series and using the

first-order approximation

R, = I+dR,, (4-42)

where 1 is the identity matrix and dR, is the differential matrix

0 -9; n; .
dRi = Q; 0 -y, ('43)
-ni v; O

where ¢, 1;, and y; are the roll, pitch, and yaw, respectively, reported for sensor i. By letting

R = R.R,~1+dR, the differential matrix dR is obtained

T 0 01—9; —-(Mi-7M2) )
dR = dR;+dR) = |_(¢,-¢» O Vi -V; (4-44)

M-Ny —(V1—-vy2) 0

This permits a first-order approximation to the transformation from the measurement frame of

sensor 2 to the measurement frame of the master sensor (sensor 1)
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rp~r,+t+dRr,+dRt (4-45)
For simplicity, and with no loss of generality, it is assumed in the simulation that the reported
values of roll, pitch and yaw for each sensor are zero; i.e., the reported measurement frame and
the stabilized frames coincide for each sensor.
Step 2. Compute the Measured Angular Bias Vector and the Measured Range Bias

Since the position vectors and the translation vector are passed to the bias estimation

algorithm in Cartesian coordinates, it is necessary to transform them into spherical coordinates.

It is noted that the angular biases have been decoupled from the range bias so that they can be
computed separately.2 The bias measurements are given by
A 0-0,

angular Zrange =r-r
E17 %12

(4-46)

Here,0,, €15 and r, are the azimuth, elevation and range, respectively, of the master sensor, and

<] and are the azimuth, elevation and range, respectively, of the second sensor, but

127 €10 ANA Ty
expressed in the measurement frame of the master sensor. Note that this is the single target
formulation. If two targets are used, the measurement vectors and other related matrix quantities

are stacked, and computations proceed in the same manner.
Step 3. Perform the Kalman Filtering Steps to Estimate the Angular Bias Parameters

At each step, compute the following:

Prvipe = Pt € (4-47)

Ske1 = Lk+1Pk+1|kLZ+1+W (4-48)
K1 = Pk+1|kLZ+1S;1+1 (4-49)
Protpes1 = UK 1L D Py (4-50)
Zangutar = Zangular_ck+1bk+1|k (4-51)
briik+1=5,, 1|k+Kk+ lzangular (4-52)

where P is the covariance of the angular bias state vector, Q is the process noise covariance, S is

the innovation covariance, K is the Kalman gain, W is the covariance of the random error in the

4-15
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measurement of the angular bias vector (see equation (3-21)), L is the observation matrix given by

I = 1 -tan(g;,)cos(8;,) -—tan (gp)sin(8,) O (4-53)
0 sin (6 ,) —cos (0,,) 1
and b is the angular bias state vector that is being estimated.
Step 4. Perform the Kalman Filtering Steps to Estimate the Range Bias Parameter.

At each step k do the following:

P::uk = P/?{k”fv (4-54)

KI?:-I = Pl?illkH£+1 I:Hk+1P1?:1|kHZ+1+°3:|—1 (4-35)
Arpsr = A’k|k+K1?:1[Zrange‘Hk+1A'k|k] (4-56)
PI?:-I[k+1 = [I‘KﬁilHkH]Pﬁ:uk' (4-57)

Ar . . . . . . . .

Here, P~ is the covariance of the range bias estimate, ] is the identity matrix, s,,is the process
. .. r. . . T . ..

noise standard deviation, K" is the Kalman gain, His [1 1], c, is the standard deviation of

the random error in the measurement of the range bias, Z ge is the range bias measurement, and

Ar is the range bias state that is being estimated.

4.8 CORRECTING BIASES

The bias estimation algorithm produces estimates of the angular bias vector b and the range
bias Ar. These quantities are used to correct the second sensor state estimate so it is aligned with
the state estimate from the master sensor in position, velocity, and acceleration. The velocity and
acceleration alignments are calculated by differentiating equation (3-15). For convenience, rather
than using the matrix transformation Cb , the position vector is first corrected element by element
in spherical coordinates in the simulation, and it is then transformed into Cartesian coordinates.
However, the velocity and acceleration corrections are performed in Cartesian coordinates. The

following are the alignment equations as used in the simulation.

4-16
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Position Correction, in Spherical Coordinates:

ry=rptAr (4-58)
8, = 6,,+A0—tan (g,,) cos (8,,) An - tan (g,,) sin (6,,) Ay 4-59)
g, = €, +Ae+sin(0,) An—cos (0,,) Ay (4-60)
Velocity and Acceleration Corrections, in Cartesian Coordinates:
2
dc dC

v, = v12+Eb e = a12+_§_b (4-61)

dt

dr,, dr, dv, dv,

where v, = = a,, and the matrix C is presented in

r R Rl

equation (3-12). The derivatives of C are straightforward, but lengthy, and are therefore omitted.

4.9 TRACK ASSOCIATION AND FUSION

As a measure of effectiveness, a chi-squared test is used to test the statistical closeness of the
track reported by the master sensor to the corresponding track reported by the second sensor. The
test is performed separately for the cases where sensor 2 state estimates are (1) aligned, and (2)
unaligned, to the sensor 1 state estimates. The estimates were tested at the 95 percent point, using
nine degrees of freedom; i.e., the estimates were associated using position, velocity, and
acceleration. The association algorithm uses the difference between the two states and a combined

covariance for the two states to compute a statistic D that is chi-square distributed

T -1
D= (X,-X)) (P, +P) (X,-X), (4-62)
where X, and X, are the state estimates from sensors 1 and 2, respectively, and P, and P, are

the covariances of the respective estimates. Note that this formulation of the problem ignores the
correlation of the tracking errors from the two sensors for a common target. This was done for
simplicity.

If D is less than the chi-square threshold at the 95 percent point for nine degrees of freedom
(which is 17.0), the two estimates are assumed to belong to the same target, and the estimates are
fused. Otherwise, the estimates belong to different targets and the estimates are not fused. The

fusion is computed as follows:

4-17
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Compute the Combined Covariance:

-1 -1 -1
P= (P +P,)
Compute the Fused State:

-1 -1
X = P(P] X, +P, X,)

4-18

(4-63)

(4-64)
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5.0 COMPARISON STUDIES

Two separate studies were performed using the simulation model for a multisensor system
with sensor-level tracking and track-to-track fusion. In this section, these studies will be described

and the results of the studies will be presented.

5.1 MEASURES OF EFFECTIVENESS

One of the primary measures of effectiveness is the RMSE, computed for the track positions,
velocities, and accelerations, before and after alignment. Monte Carlo simulations provide good
estimates of the RMSEs, with 100 realizations being performed for each experiment. The percent
of successful associations (PA) that occur when the estimates are aligned and unaligned is used as
another measure of the effectiveness of the alignment process. Time plots of the bias parameters
and various system tracks are used to visualize the convergence of the biases to their true values
and the alignment process, as well as to monitor the simulation and to detect inconsistencies in the

results.

5.2 COMPARISON OF FILTERS AND TIME-ALIGNMENT METHODS

The first study was designed to compare the effectiveness of various tracking filters and time-
alignment techniques with respect to bias estimation, alignment, and association. The tracking
filters to be compared included a single model filter using a CA model, and a two-model IMM
filter with a CV model and a CA model. The time-alignment techniques to be compared were a
predictor based on the CA model, a predictor based on the two-model IMM design, a smoother

based on the CA model, and a smoother based on the two-model IMM design. Four

5-1
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configurations of tracking filter/time-alignment techniques were used: CA tracking filters with
CA prediction (CA-P), CA tracking filters with both CA prediction and CA smoothing (CA-SM),
IMM tracking filters with IMM prediction (IMM-P), and IMM tracking filters with both IMM
prediction and IMM smoothing (IMM-SM). For each configuration, 100 Monte Carlo
experiments were performed and the RMSEs, PA, and bias convergence plots were generated. The
input data and the initial seed for the random number generator were the same for each
configuration, so that any differences in the measures of effectiveness could be attributed to the
tracking filter/time-alignment configuration.

Both sensors are reporting~ data with period of 1 sec, but there is a 0.5-sec time lag between the
sensors. The measurements from both sensors contain zero-mean Gaussian random errors with

standard deviations of 25 m in range and 0.2 deg in bearing and elevation. Both sensors are

stationary and the second sensor is located at ¢ = ty = 25 m and t, = 10 m relative to the

master sensor’s stabilized frame. The first sensor has alignment errors given by

Arp =25 m A8, = 0.5 deg Ag, = -0.5 deg

Ay, = —0.5 deg  An, = 05 deg  Ap; = O deg -1
and the second sensor has alignment errors given by
Ar, = 50 m A8, = 0.5 deg Ag, = 0.5 deg 5:2)
Ay, = 0.5 deg An, = -0.5 deg Ag, = 0 deg
which gives the following relative alignment errors
Ar = -25 m AB = -1 deg Ag = -1 deg
(3-3)

Ay = -1 deg An =1 deg
The five bias parameters are estimated using two Kalman filters: a first-order filter to estimate
the range bias and a fourth-order filter to estimate the angular biases. The covariances of the

. -2 2 2
process noises for the range and angular bias filters are given by 10 "'m /sec’ and

-6 2 2 . . . .
10 rad”/sec”, respectively. The inputs to the bias filters are track estimates from the two
sensors. The tracking filters at both sensors are implemented with the same parameters, where the

process noise covariance @ -y, for the CV model and Q ., for the CA model are given by
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5 0 O ) 4 50 0 O 5 6
QCV =10 5 o |m /sec QCA =10 50 ofm /sec (5-4)
0O 0 01 0 0 1

T
The initial model probability vector is p, = [0.9 0_1] and the model-switching probability
matrix is given by :

P11 Pryf _ {0.9 0.1} (5-5)
Py Py 02 08

The target trajectories used in these simulations are presented in Figure 5-1. Two of the targets
(targets 1 and 2) are used to estimate the bias parameters, and the third one (i.e., target 3) is
corrected using the estimated alignment vector. The alignment was performed dynamically; that
is, as bias estimates were generated at a point in time, they were then applied to the track
estimates to align them at this point in time. The third target was included to see how well the
alignment algorithm performed when other targets are used to generate the alignment vector. For
example, in an actual implementation of the alignment algorithm, one or more common targefs
would be identified for use in the bias estimation algorithm; this report does not deal with the
potentially difficult problem of initially identifying common targets before the sensors are
aligned. The bias estimates would then be applied to all of the tracks reported by the second
sensor to align them to the master sensor. After aligning the tracks, a track-to-track association
algorithm could be used to identify common targets reported by the two sensors. Once any
common targets are identified, the track estimates reported by the two sensors for a common
target could be fused to obtain more accurate state estimates.

The results for the first example are presented in Figures 5-2 to 5-9. In Figures 5-2 to 5-4, the
RMSEs (for target 3) in position, velocity, and acceleration, before and after alignment are shown.
The mean RMSE:s are largest for the CA-P, and smallest for the IMM-SM, both before and after
alignment, for position, velocity, and acceleration. The unaligned position errors were on the
order of 1200 m, or about 300 percent larger than the aligned position errors. The use of the IMM
algorithms for tracking resulted in significantly smaller RMSEs than the CA filters, on the order
of 41 m less error for the IMM-P estimates and 78 m less error for the IMM-SM estimates. Since
velocity and acceleration are not as sensitive to sensor alignment in sensor-level tracking with
track-to-track fusion, the differences between the aligned and unaligned RMSEs for these were

not as large, but the improvements due to use of the IMM algorithm and smoothing are apparent.

5-3




NSWCDD/TR-94/285

x 10*
6 ) ) ) 1 T 1
1
5r 4
4r 4
3r i
E
2
8ol 3 4
§
> 1r -
ot Targets 1 & 2 used for bias estimetion. 4
Biases applied to target 3.
1t 2 i
2 : I ! 1 1 1
-1 0 1 2 3 4 5 6
X-Coordinate (m) x 10*

FIGURE 5-1. TRUE TRAJECTORIES OF SIMULATED TARGETS IN XY-PLANE

In Figures 5-5 to 5-9, the convergence of the range and angular bias parameters are illustrated.
All the biases converge to nearly their true values in less than 60 sec. The IMM algorithms result
in slightly more overshoot in the biases than the CA algorithms, but the RMSEs for the IMM
cases are lower after about 30 sec, indicating that good tracking is as important as quick bias
convergence to track alignment.

The percent of associated state estimates ranged from 90 to 95 percent for the aligned data and
was zero for all unaligned cases. This shows the importance of alignment in multisensor systems.
Without alignment, a multisensor system would hold two tracks for each common target;
however, with alignment, redundant tracks would occur much less frequently because the

common tracks were associated about 90 to 95 percent of the time.
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5.3 EFFECT OF BIASES ON ASSOCIATION AND FUSION

The second study was performed to analyze the effects of sensor alignment on track-to-track
association and data fusion, using the same simulated sensors as for the first study. There were
two phases to this second study. In the first phase, all the biases were set to zero except the bearing
bias. The bearing bias was increased in small increments from 0 to 10 deg, and 100 Monte Carlo
runs were performed for each azimuth value. The PA was calculated for the aligned and unaligned
tracks. The track-to-track association test has a test statistic that is chi-squared distributed with
nine degrees of freedom. The 95-percent point for the test statistic is 17; if the test statistic is
smaller than 17, the two tracks are accepted as originating from the same target (i.e., the tracks are
associated). Figure 5-10 is a plot of the PA versus bearing bias for the aligned and the unaligned
tracks. Note that when the sensors are not aligned, the PA rapidly degrades with increasing
bearing bias, but that when the sensors are aligned, the PA remains high, between 90 and 95

percent. This reflects the high sensitivity of association to uncorrected sensor biases.
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The second phase of the study was designed to assess the effects of alignment on the
efficiency of a generic multisensor track fusion system. One of the sensors was unbiased so that
the RMSE reflects that of the second sensor track from the truth, except for random noise. A fused
state estimate was formed by assuming perfect association, and statistically weighting and
combining the state estimates from the two sensors to form a single state estimate. The RMSE in
position for the aligned and unaligned fused track was computed for bearing biases of 0 through
0.6 deg in 0.1-deg increments, with 100 Monte Carlo runs being performed for each bearing bias.
The RMSE for the separate tracks was computed for the zero-bias case only, because the
individual sensors are blind to their own biases. Figure 5-11 shows a plot of the RMSEs for the
unaligned case. Note that the position RMSE of the fused track increases with increasing bias and
it is smaller than the RMSE of the individual tracks until about 0.4 deg of bearing bias, above
which the error in the fused track is actually greater than that of the error in the individual sensor
tracks. In Figure 5-12, the position RMSEs for the aligned fused track are shown. Note that the
position RMSE in the fused track always stays well below the error in the individual sensor tracks
when the sensors are aligned.

This study illustrates the importance of alignment to track accuracy and system efficiency. If
the fused track were generated by a misaligned system, they may be less accurate than the tracks

of the individual sensors.
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6.0 REAL DATA EXAMPLE

In this section, an example of aligning asynchronous data from a 2D ESM sensor and a 3D
radar is described. This experiment was performed under particularly suboptimal data conditions.
The sensors were approximately 75 ft apart, but the actual sensor locations are not known. The
ESM measured bearing and elevation only, while the radar measured range, bearing, and
elevation. A noted difficulty was that the elevation coverage zones of the two sensors only
overlapped slightly. This meant that there was only a small chance of observing targets of
opportunity that were correlated in both time and space. Also, the number of correlated data
points available for such a target was likely to be small. The sensors themselves were not
stabilized by means of Inertial Measurement Units, which meant that reported values of roll,
pitch, and yaw were not available. Therefore, they were set to zero. A heuristic of assigning the
radar range measurement to the 2D ESM measurement was applied, so that the relative range bias
was zero. There were only 18 radar data points available to compute the bias parameters. The data
was acquired in filtered form, but the exact nature of the tracking algorithm was not known. Thus,
only prediction was performed, using the CA predictor. The exact standard deviations in the
sensor measurements were not known, but were set to assumed values. Since the radar data rate
was lower than the ESM data rate, the 18 radar measurements were predicted to the times of the
nearest future 18 ESM measurements. The bias parameters were estimated using the time-aligned
radar and ESM data, with the ESM state augmented with the radar range. After allowing the
biases to converge, the augmented ESM data were corrected in Cartesian coordinates. Figure 6-1
shows the unaligned ESM, the aligned ESM, and the radar tracks in the XY-plane. In Figure 6-2,
the bearing tracks as a function of time are shown. Note that the bearing adjustment was quite
successful. The elevation alignment is illustrated in Figure 6-3. This was not as successful
because the elevation data for the two sensors was noisier than the bearing data. However, the
mean absolute error of the aligned elevation track relative to the predicted radar elevation track
was less than that of the unaligned track. The alignment algorithm did improve the elevation

estimate, though not dramatically, as it did for the bearing track.
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The results of this real data test indicate that the bias estimation algorithm can permit
accurate alignment of dissimilar sensors, and may be able to operate successfully even under

highly suboptimal conditions.
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7.0 SUMMARY

The multisensor alignment problem was examined in this report. Simple simulations were
used to demonstrate the effects of alignment errors on multisensor tracking. The results showed
that uncompensated alignmeht errors can seriously degrade the performance of a multisensor
tracking system, and they may actually cause the performance to be worse than that obtained
using only a single sensor. The amount of degradation in performance depends on the magnitudes
of the alignment errors and random noises in the system. For example, it may still be
advantageous (i.e., better performance than using only a single sensor) to employ multisensor
tracking in the presence of uncompensated alignment errors, if the magnitudes of the alignment

errors are of the same order or smaller than the magnitudes of the random noises.

A model was developed to simulate the alignment of two asynchronous sensors in the
presence of alignment errors (biases) and random noise. The simulation was based on previous
work, as described in references (2), (3), and (5). Included in this study were the use of time-
alignment and smoothing algorithms and multiple-model filters. A series of Monte Carlo studies
was performed to compare the performances of various filter and time-alignment methods in
conjunction with track alignment and association. These studies indicated that track association is
extremely sensitive to proper alignment. The studies also indicate that the time alignment of
asynchronous data only mildly impacts the amount of error in the aligned track. The same is true
for the use of different filtering techniques. Although the differences in performance due to the
asynchronous data are small, the IMM filter combined with IMM prediction and IMM smoothing
resulted in the smallest aligned track RMSE, while the CA filter with CA prediction only resulted
in the largest RMSE. Bias parameters were seen to converge to near their true values in 30 to
60 sec. The state estimates that could be associated with a chi-squared test were between 90 and

95 percent when the tracks were aligned, and was zero when the tracks were unaligned.
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A preliminary set of experiments was performed to assess the impact of the time-correlation
of the state estimates on the sensor bias estimation problem. The results of those experiments,
though not presented in this report, tend to indicate that the time-correlation does not seriously
affect the bias estimation or the accuracy of track alignment. However, the results of these
experiments are preliminary and more work is needed to ascertain more definite results. It is
suspected that the effect of the time-correlation is reduced because the bias measuréments are
differences of the state estimates from the two sensors. It would be of interest to investigate this
problem both analytically and experimentally.

A real data experiment ﬁsing filtered data from a 2D ESM and a 3D radar resulted in the
successful alignment of the ESM data to that of the radar in the XY-plane and in bearing.

Based on these results, it is likely that this algorithm would prove to be useful for relatively
aligning data from diverse tracking sensors that are stabilized and mounted near to each other,
such as those found on a ship. This would increase the efficiency of a multisensor tracking system,
lessen the tracking burden by providing more accurate data for track association and fusion, and

provide a more accurate picture of the environment.
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